Distribuições de probabilidade contínuas

Parte 3

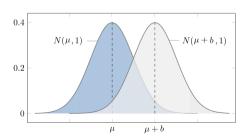
Prof.: Eduardo Vargas Ferreira

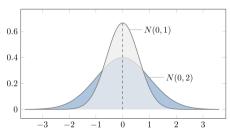
As principais distribuições de probabilidade

Discretas

- Uniforme Discreta;
- Bernoulli;
- Binomial;
- Hipergeométrica.
- Poisson;
- Geométrica;
- Binomial negativa;

Continuas


- Uniforme Contínua;
- Exponencial;
- Normal;
- Lognormal;
- Gama;
- Weibull;
- Beta.


Modelo Normal

Definição: Dizemos que a v.a. X tem distribuição normal com parâmetros μ e σ^2 , $-\infty < \mu < +\infty$ e $\sigma^2 > 0$, se sua densidade é dada por:

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \text{ com } x \in \mathbb{R}$$

Notação: $X \sim N(\mu, \sigma^2)$.

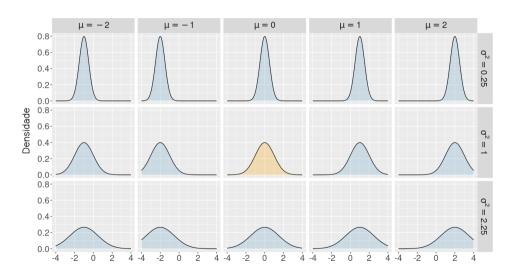
Transformação linear de normal é normal

 \blacktriangleright Seja $X \sim N(\mu, \sigma^2),$ vamos encontrar a distribuição de $Z = \frac{X - \mu}{\sigma}.$

$$\mathbb{E}\left(\frac{X-\mu}{\sigma}\right) = \mathbb{E}\left(\frac{1}{\sigma}X - \frac{\mu}{\sigma}\right) \qquad \mathbb{V}ar\left(\frac{X-\mu}{\sigma}\right) = \mathbb{V}ar\left(\frac{1}{\sigma}X - \frac{\mu}{\sigma}\right)$$

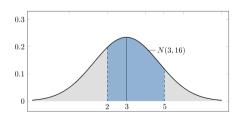
$$= \frac{1}{\sigma}\mathbb{E}(X) - \frac{\mu}{\sigma}$$

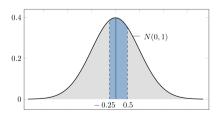
$$= \frac{\mu}{\sigma} - \frac{\mu}{\sigma}$$


$$= 0$$

$$= \frac{\sigma^2}{\sigma^2}$$

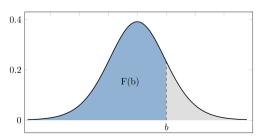
$$= 1$$


 $Z \sim N(0,1) \rightarrow$ Modelo Normal padrão.

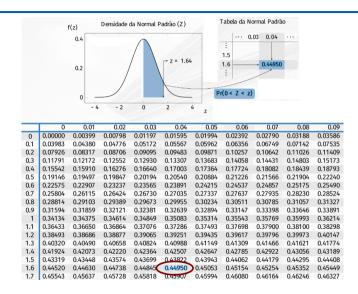

Gráfico da distribuição Normal

▶ Suponha que $X \sim N(3, 16)$ e que desejamos calcular:

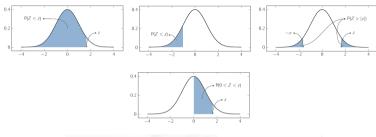
$$P(2 \le X \le 5) = P\left(\frac{2-3}{4} \le \frac{X-3}{4} \le \frac{5-3}{4}\right) = P\left(-\frac{1}{4} \le Z \le \frac{1}{2}\right)$$

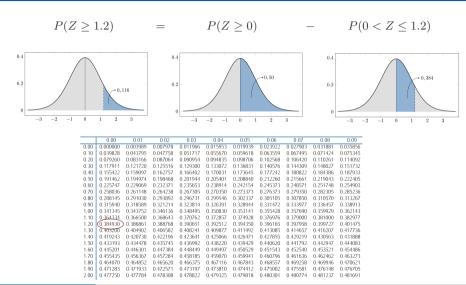


Função distribuição acumulada


▶ A função distribuição acumulada, F(b), de uma v.a. normal X, com média μ e variância σ^2 , é obtida integrando-se a f(x) de $-\infty$ até b, ou seja,

$$F(b) = \int_{-\infty}^{b} f(x; \mu, \sigma^{2}) dx, b \in \mathbb{R}.$$


Não pode ser calculada analiticamente!


Tabela Normal

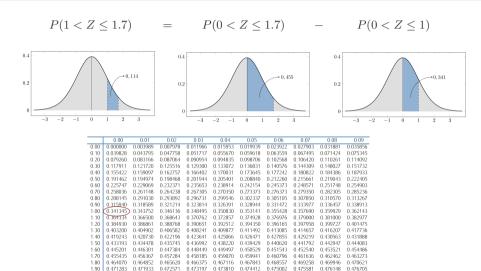
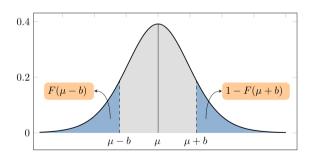


Tabela Normal

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
_										
0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41309	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.6	0.44520	0.44630	0.44738	0.44845	0.44950	0.45053	0.45154	0.45254	0.45352	0.45449
1.7	0.45543	0.45637	0.45728	0.45818	0.45907	0.45994	0.46080	0.46164	0.46246	0.46327

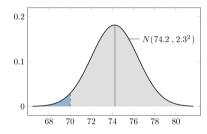


2.00 0.477250 0.477784 0.478308 0.478822 0.479325 0.479818 0.480301 0.480774 0.481237 0.481691

Simetria da normal

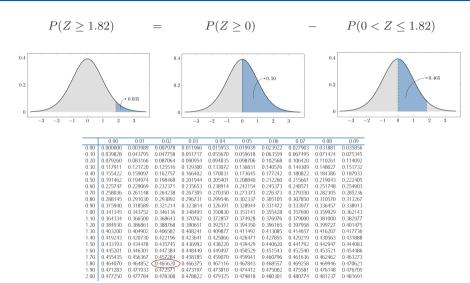
Definição: A distribuição normal é simétrica em torno de sua média μ . Em outras palavras, se $X \sim N(\mu, \sigma^2)$ e F(x) a acumulada de X, temos que:

$$F(\mu - b) = 1 - F(\mu + b)$$



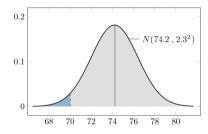
Exemplo: leite pasteurizado

► Em um laticínio, sabe-se que a temperatura do pasteurizador segue uma distribuição Normal com média 74.2°C e desvio padrão 2.3°C.



1. Qual a probabilidade da temperatura ficar inferior a 70°C?

$$P(X < 70) = P\left(\frac{X - 74.2}{2.3} < \frac{70 - 74.2}{2.3}\right)$$
$$= P(Z < -1.82)$$


Exemplo: leite pasteurizado

Exemplo: leite pasteurizado

► Em um laticínio, sabe-se que a temperatura do pasteurizador segue uma distribuição Normal com média 74.2°C e desvio padrão 2.3°C.

. Qual a probabilidade da temperatura ficar inferior a 70°C?

$$P(X < 70) = P\left(\frac{X - 74.2}{2.3} < \frac{70 - 74.2}{2.3}\right)$$

= $P(Z < -1.82) = 0.035$

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

